If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+18x-53=0
a = 1; b = 18; c = -53;
Δ = b2-4ac
Δ = 182-4·1·(-53)
Δ = 536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{536}=\sqrt{4*134}=\sqrt{4}*\sqrt{134}=2\sqrt{134}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{134}}{2*1}=\frac{-18-2\sqrt{134}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{134}}{2*1}=\frac{-18+2\sqrt{134}}{2} $
| 2(2z-4)=2(2z−4)=4 | | 3/8y-7=5 | | y=01/2 | | p-0.06p=216.2 | | 0.3x+2.2x=19.2-1.8+1.9x | | 0=9(k-0.67+33 | | 2x+2.6=8.4 | | 2.9x-10=1.4x+20 | | -3x+15=-42 | | (1/8)=(4/5)x-(1/4) | | 3x+x=155 | | (x+3)x=155 | | 2(z-2)-1=3(z-3 | | 5n/6+1/9=3n/ | | −4(x+6)=−8 | | 4r2=−28r. | | C=5/9(f-32$ | | -3v-6v29=43 | | 0.63x-245=100 | | 3y+18=7y66 | | 2x-4(3)=180 | | -3÷k=9 | | -8(x+5)=4(x-6) | | 3a-17=67 | | 11-z=29 | | (13.9-7.5x)=(97.3+6.4+x | | x+4823874823=4823874824 | | x+69=70 | | 12^2x+^3=144 | | (2x-5)^2=8x-20 | | 3r+7=43 | | 4(-1-5x)+5x=86 |